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Design and Framework



Causal Inference and Program Evaluation

• Main goal: learn about treatment effect of policy or intervention

• If treatment randomization available → easy to estimate causal effects

• If treatment randomization is not available → observational studies

• Selection on observables

• Instrumental variables, Diff-in-diff, etc.

• Regression Discontinuity (RD) design

• Simple assignment, based on known exogenous factors

• Objective basis to evaluate assumptions

• Easy to falsify and interpret

• Careful : very local!
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Regression Discontinuity Design

• Observational units receive a score (Xi )

• A treatment is assigned based on the score and a known cutoff (c)

• The treatment is:

• given to units whose score is greater than the cutoff
• withheld form units whose score is smaller than the cutoff

• Under certain assumptions, the sharp change in the probability of treatment
assignment allows us to learn about the effect of the treatment

Figure 1: Source: A Practical Introduction to Regression Discontinuity Designs: Foundations, Cattaneo M., Idrobo N.,
Titiunik R. (2019) 6



RD Designs: Taxonomy

• Frameworks:

• Identification: Continuity based, Local Randomization

• Score: Continuous, Many Repeated, Few Repeated

• Settings:

• Sharp, Fuzzy, Kink, Kink Fuzzy

• Multiple Cutoff, Multiple Scores, Geographic RD

• Dynamic, Continuous Treatments, Time, etc.

• Parameters of Interest

• Average Effects, Distributional Effects, Partial Effects

• Heterogeneity, Covariate-Adjustment, Differences, Time

• Extrapolation
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Sharp RDD



RCT vs (Sharp) RD Designs

• Notation: (Yi (0),Yi (1), Xi ), i = 1,2, . . . ,n

• Treatment: Ti ∈ 0,1, Ti independent of (Yi (0),Yi (1), Xi )

• Data: (Yi ,Ti , Xi ), i = 1,2, . . . ,n with:

Yi =
Yi (0) if Ti = 0

Yi (1) if Ti = 1

• Average Treatment Effect:

τATE ≡ E [Yi (1)−Yi (0)] = E [Yi | T = 1]−E [Yi | T = 0]
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RCT vs (Sharp) RD Designs

• Notation: (Yi (0),Yi (1), Xi ), i = 1,2, . . . ,n, Xi score

• Treatment: Ti ∈ 0,1, Ti = 1(Xi ≥ c) c cutoff

• Data: (Yi ,Ti , Xi ), i = 1,2, . . . ,n with:

Yi = (1−Ti ) ·Yi (0)+Ti ·Yi (1) =
Yi (0) if Ti = 0

Yi (1) if Ti = 1

• Average Treatment Effect at the cutoff (continuity-based):

τsrd ≡ E [Yi (1)−Yi (0) | Xi = c] = lim
x→c+

E [Yi | Xi = x]− lim
x→c−

E [Yi | Xi = x]

• Identifying Assumptions (continuity-based) :

• Comparability between units with very similar values of the score but on
opposite sides of the cutoff → assume smoothness of other covariates at the
cutoff

• E [Yi (1) | Xi = x], E [Yi (0) | Xi = x] continuous at c
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RCT vs (Sharp) RD Designs

τsrd ≡ E [Yi (1)−Yi (0) | Xi = c]︸ ︷︷ ︸
unobservable

= lim
x→c+

E [Yi | Xi = x]︸ ︷︷ ︸
estimable

− lim
x→c−

E [Yi | Xi = x]︸ ︷︷ ︸
estimable

Figure 2: Source: A Practical Introduction to Regression Discontinuity Designs: Foundations, Cattaneo M., Idrobo N.,
Titiunik R. (2019) 11



Sharp RDD

• Parametric estimation:

• vanilla OLS:
• E(Y | X ) is linear
• Estimation employs data away from the discontinuity → convergence rate

(n1/2)

• Y =α+τsrdT +β(X − c)+ϵ

• τ̂SRD unbiased and consistent if all assumptions are met

• Non parametric estimation

• Local polynomial methods
• Relax assumptions on E(Y | X )

• Estimation uses only observations near the discontinuity
• Estimation requires selecting three main hyper-parameters: polynomial order

(p), Kernel function K (.), and bandwidth (h)

• Usually p = 1 (Local Linear Regression), triangular Kernel, and cross-validated
bandwidth

• Slower convergence rate than vanilla OLS, (nr ,r < 1/2)

12



Fuzzy RDD



Fuzzy RD designs

• Treatment assignment: Ti ∈ (0,1), Ti = 1(Xi ≥ c) c cutoff

• Imperfect compliance

• probability of receiving treatment changes at cutoff, but not from 0 to 1

• Treatment take up: Di (T ) ∈ (0,1) are potential treatments:

Di = (1−Ti ) ·Di (0)+Ti ·Di (1) =
Di (0) if Ti = 0

Di (1) if Ti = 1

• Data: (Yi ,Ti ,Di , Xi ), i = 1,2, . . . ,n with four potential outcomes:

Yi = Ti ·Yi (1,Di (1))+(1−Ti )Yi (0,Di (0)) =


Yi (0,0) if Ti = 0 Di (0) = 0 compliers
Yi (0,1) if Ti = 0 Di (0) = 1 non-compliers
Yi (1,0) if Ti = 1 Di (1) = 0 non-compliers
Yi (1,1) if Ti = 1 Di (1) = 1 compliers
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Fuzzy RD designs

Figure 3: Source: A Practical Introduction to Regression Discontinuity Designs: Foundations, Cattaneo M., Idrobo N.,
Titiunik R. (2019)
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Estimands and Inference

• Intention-to-treat effects:

τitt ≡ E [Yi (1,Di (1)−Yi (0,Di (0)) | Xi = c]

= lim
x→c+

E [Yi (1,Di (1)) | Xi = x]− lim
x→c−

E [Yi (0,Di (0)) | Xi = x]

• First-Stage effects:

τfs ≡ E [Di (1)−Di (0) | Xi = c]

= lim
x→c+

E [Di | Xi = x]− lim
x→c−

E [Di | Xi = x]

• Identifying Assumptions:

• E [Y (1,Di (1)) | Xi = x], E [Y (0,Di (0)) | Xi = x] continuous in X at c

• E [Di (1) | Xi = x], E [Di (0) | Xi = x] continuous in X at c
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Estimands and Inference

• Treatment Effects for Subpopulations:

τfrd ≡ τitt
τfs

(same interpretation as IV literature)

• Identifying Assumptions for τfrd = τLATE:

• Exclusion restriction

• Monotonicity: probability of receiving treatment increases with running
variable, i.e. there are no defiers

• Relevant instrument: τfs ̸= 0, rule of thumb Fstat > 20
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Estimands and Inference

• Parametric Estimation:

• Two-stage-least square:

Yi =β+τittTi +δX +ν intention-to-treat

Di =α+τfsTi +γX +ϵ first-stage

Yi =β+τfrdD̂i +ωX +η second stage

• Non-parametric Estimation:

• Local polynomial methods at each stage
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Simulations



Sharp RDD

• Objectives:

• Understanding properties of Parametric and Non-parametric estimators under
different conditions:

• How well the estimators work as you vary how many observations you have
near the cutoff?

• How well estimators work in case of mi-specified functional forms of E(Y | X )?

• Simulations set-up

• Number of simulations: 8000

• cutoff= 0

• X ∼ N (0,σx ) running variable, with σx = {0.01,10}

• T = I (X ≥ 0) and perfect compliance

• Y (0) = 0.3+0.3 ·X +ϵ, ϵ∼ N (0,1) (linear)

• Y (1) = 2+0.3 ·X +ϵ, ϵ∼ N (0,1) (linear)

• τsrd = 2−0.3 = 1.7
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Figure 4: Case with σx = 0.01
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Figure 5: Vanilla OLS

• RMSE: 0.12

• Bias: 0.00076

• Coverage: 95%

Figure 6: Local Linear Regression

• RMSE: 0.23

• Bias: -0.00266

• Coverage: 94%
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Figure 7: Vanilla OLS

• RMSE: 0.08

• Bias: 0.00034

• Coverage: 95%

Figure 8: Local Linear Regression

• RMSE: 0.16

• Bias: 0.00203

• Coverage: 94%
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Figure 9: Vanilla OLS

• RMSE: 22.75

• Bias: 22.2743

• Coverage: 32%

Figure 10: Local Linear Regression

• RMSE: 0.3

• Bias: 0.1664

• Coverage: 90%
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Fuzzy RDD

• Objectives:

• Understanding properties of Parametric and Non-parametric estimators under
different compliers distributions around cutoff.

• Understanding properties of Parametric and Non-parametric estimators under
violation of theoretical assumptions

• Simulations set-up

• X ∼ N (0,σx ) running variable, with σx = 1

• Di =

Binomial(1,0.2), if Ti < c

Binomial(1,0.8), if Ti ≥ c

• Di =


0 if Ti < 0, Xi <−2

Binomial(1,0.2) if Ti < 0, -2 < Xi < 0

Binomial(1,0.8) if Ti ≥ 0, 0 ≤ Xi < 2

1 if Ti ≥ 0, Xi ≥ 2

• Di =Binomial
(
1,Φ

(
Xi −µx
σd

))
, treatment take-up, with σd = {0.2,1}
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Figure 11: Outcomes in fuzzy Design
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Figure 12: Case with "Uniform" probability, i.e. 20% before cutoff, 80% after
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Figure 13: First-stage (2sls)

• Bias: -0.0006

Figure 14: ITT (2sls)

• Bias: 0.0003

Figure 15: FRD (2sls)

• Bias: -0.0003

Figure 16: First-stage (LLR)

• Bias: 0.00047

Figure 17: ITT (LLR)

• Bias: 0.0006

Figure 18: FRD (LLR)

• Bias: 0.0018
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Figure 19: Case with "Jump"

29



Figure 20: First-stage (2sls)

• Bias: -0.063

Figure 21: ITT (2sls)

• Bias: -0.1038

Figure 22: FRD (2sls)

• Bias: 0.005

Figure 23: First-stage

• Bias: -0.017

Figure 24: ITT (LLR)

• Bias: -0.027

Figure 25: FRD (LLR)

• Bias: 0.00035
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Figure 26: Case with σd = 0.2
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Figure 27: First-stage (2sls)

• Bias: -0.186

Figure 28: ITT (2sls)

• Bias: -0.315

Figure 29: FRD (2sls)

• Bias: 0.002

Figure 30: First-stage (LLR)

• Bias: -0.803

Figure 31: ITT (LLR)

• Bias: -1.292

Figure 32: FRD (LLR)

• Bias: -0.430
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Figure 33: Case with σd = 1
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Figure 34: First-stage

• Bias: -0.363

Figure 35: ITT

• Bias: -0.616

Figure 36: FRD

• Bias: 0.018

Figure 37: First-stage

• Bias: -0.494

Figure 38: ITT

• Bias: -0.839

Figure 39: FRD

• Bias: 12.478
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Conclusion

• Sharp RDD

• Vanilla OLS estimator is the best model when functional form assumption is
correct

• Local linear regression is the best model when the functional form is unknown
and the running variable has outliers, i.e., observations far from the cutoff
with great values.

• Fuzzy RDD

• Non-compliance to treatment assignment damage estimators’ properties

• Vanilla OLS estimators work better than the Local linear model when
non-compliance is close to the cutoff

• When the first stage is weak, estimates become unreliable

36


	Design and Framework
	Sharp RDD
	Fuzzy RDD
	Simulations
	Conclusion

