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Design and Framework



Causal Inference and Program Evaluation

= Main goal: learn about treatment effect of policy or intervention
= If treatment randomization available — easy to estimate causal effects
= [f treatment randomization is not available — observational studies

= Selection on observables

= [nstrumental variables, Diff-in-diff, etc.

= Regression Discontinuity (RD) design

= Simple assignment, based on known exogenous factors
= Objective basis to evaluate assumptions
= Easy to falsify and interpret

= Careful: very local!



Regression Discontinuity Design

= Observational units receive a score (X;)
= A treatment is assigned based on the score and a known cutoff (c)
= The treatment is:

= given to units whose score is greater than the cutoff

= withheld form units whose score is smaller than the cutoff

= Under certain assumptions, the sharp change in the probability of treatment
assignment allows us to learn about the effect of the treatment

Assigned to Control : Assigned to Treatment

«— Cutoff

Conditional Probability of Receiving Treatment

Score (X)
Figure 1: Source: A Practical Introduction to Regression Discontinuity Designs: Foundations, Cattaneo M., Idrobo N.,
Titiunik R. (2019)



RD Designs: Taxonomy

= Frameworks:

= |dentification: Continuity based, Local Randomization
= Score: Continuous, Many Repeated, Few Repeated
= Settings:
= Sharp, Fuzzy, Kink, Kink Fuzzy
= Multiple Cutoff, Multiple Scores, Geographic RD
= Dynamic, Continuous Treatments, Time, etc.

= Parameters of Interest

= Average Effects, Distributional Effects, Partial Effects
= Heterogeneity, Covariate-Adjustment, Differences, Time

= Extrapolation



Sharp RDD




RCT vs (Sharp) RD Designs

= Notation: (Y;(0),Y;(1),X;),i=1,2,...,n
= Treatment: T;€0,1, T; independent of (Y;(0),Y;(1),X;)

« Data: (v;,T;,X;), i=12,...,n with:

Y;0) if T;=0
Vi) ifT;=1

= Average Treatment Effect:

TATE = E[Y; (D) - Y;(0)] = E[Y; [ T=11-E[Y; | T =0]



RCT vs (Sharp) RD Designs

= Notation: (Y;(0),Y;(1),X;), i=1,2,...,n, X; score
= Treatment: T;€0,1, T;=1(X;=c¢) c cutoff
= Data: (Y;,1;,X;), i=1,2,...,n with:

Y;0) if T;=0

Yi:(l—Ti)'Yi(O)‘*'Ti'Yi(l):{
Y1) ifTi=1

= Average Treatment Effect at the cutoff (continuity-based):

Tsrd = EYi (D) = Y;(0) | X; = ] = lim E[Y; | X; = x] = lim E[Y; | X; = x]
X—C nd

= Identifying Assumptions (continuity-based) :

= Comparability between units with very similar values of the score but on
opposite sides of the cutoff — assume smoothness of other covariates at the
cutoff

= E[Y;(1)|X;=x], E[Yi(0)|X;=x] continuous at c
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RCT vs (Sharp) RD Designs

Tsrd = E[Vi(1) - V3 (0) | X; = c] = lim E[Y; | X; = x] - lim E[Y; | X; =x]
X—C s

unobservable .
estimable estimable

E[V(1)IX]

E[Y()IX], E[Y(0)IX]
i

[ ey “EN O

Cutoff

Score (X)

Figure 2: RD Treatment Effect in Sharp RD Design
Figure 2: Source: A Practical Introduction to Regression Discontinuity Designs: Foundations, Cattaneo M., ldrobo N.,

Titiunik R. (2019) 11



Sharp RDD

= Parametric estimation:

= vanilla OLS:

E(Y | X) is linear

Estimation employs data away from the discontinuity — convergence rate
)

Y=a+14qT+P(X—-c)+e€

Tsrp unbiased and consistent if all assumptions are met

= Non parametric estimation

= Local polynomial methods

Relax assumptions on E(Y | X)
Estimation uses only observations near the discontinuity

Estimation requires selecting three main hyper-parameters: polynomial order
(p), Kernel function K(.), and bandwidth (h)

Usually p=1 (Local Linear Regression), triangular Kernel, and cross-validated
bandwidth

Slower convergence rate than vanilla OLS, (n",r<1/2)
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Fuzzy RDD



Fuzzy RD designs

= Treatment assignment: T; € (0,1), T;=1(X;=c) c cutoff
= Imperfect compliance

= probability of receiving treatment changes at cutoff, but not from 0 to 1
= Treatment take up: D;(T)€ (0,1) are potential treatments:

D;0) ifTi=0

Di:(I_Ti)'Di(O)‘*'Ti‘Di(D:{ )
D;1) if Ti=1

= Data: (Y;,T;,D;,X;), i=1,2,...,n with four potential outcomes:

Y;(0,0) if T;=0 D;(0)=0 compliers

Y;(0,1) if ;=0 D;(0)=1 non-compliers
Y; =T;-Y;(1,D;(1))+(1-T;)Y;(0,D;(0)) = ) )

Y;(1,0) if T;=1 D;(1)=0 non-compliers

Y;(1,1) if T;=1 D;(1)=1 compliers
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Fuzzy RD designs

=1]X=x)
=1|X=x)

Assigned to Control Assigned to Treatment Assigned to Control Assigned to Treatment

<«——— Cutoff & Cutoff

Probability of Receiving Treatment, P(D:

o
Probability of Receiving Treatment, P(D:

o

-

[ €
Score (x) Score (x)

(a) Sharp RD (b) Fuzzy RD

Figure 3: Source: A Practical Introduction to Regression Discontinuity Designs: Foundations, Cattaneo M., Idrobo N.,
Titiunik R. (2019)
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Estimands and Inference

= [ntention-to-treat effects:

Tite = E[Y;(1,D;(1) - Y;(0,D;(0) | X; = c]
lim E[Y;(1,D;(1)) | X; = x] = lim E[Y;(0,D;(0)) | X; = x]

= First-Stage effects:
Tt = E[D;(1) — D;(0) | X; = c]
= lim E[Di |Xi =x]— limﬁE[Di |Xi =x]
x—ct X—C
= ldentifying Assumptions:

= E[Y(1,D;(1)|X;=x], E[Y(0,D;(0)|X;=x] continuous in X at c
= E[D;(1)| X;=x], E[D;0)|X;=x] continuousin X at c
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Estimands and Inference

= Treatment Effects for Subpopulations:
_ Titt . - -
Tfd = — (same interpretation as IV literature)
Tfs

= Identifying Assumptions for g4 = T ATE:

= Exclusion restriction

= Monotonicity: probability of receiving treatment increases with running
variable, i.e. there are no defiers

= Relevant instrument: 7¢ #0, rule of thumb Fgtae > 20
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Estimands and Inference

= Parametric Estimation:
= Two-stage-least square:

Yi=Pf+7TitT; +0X +v intention-to-treat
Di=a+14Ti+yX+e first-stage

Y; =B+1pgDi +wX +1  second stage

= Non-parametric Estimation:

= Local polynomial methods at each stage

18



Simulations




Sharp RDD

= Objectives:
= Understanding properties of Parametric and Non-parametric estimators under
different conditions:

= How well the estimators work as you vary how many observations you have
near the cutoff?

= How well estimators work in case of mi-specified functional forms of E(Y | X)?
= Simulations set-up

= Number of simulations: 8000

= cutoff=0

= X~ N(0,0,) running variable, with o, ={0.01,10}
= T=1(X=0) and perfect compliance

= Y(0)=0.3+0.3-X+¢€, €~N(0,1) (linear)

= Y(1)=2+03-X+¢, €~N(0,1) (linear)

" Tqg=2-03=17
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QOutcome

25

0.0

Response Variable and Compliance

-25

T T T T
-0.03 -0.02 -0.01 0.00 0.01
Running variable

FALSE + TRUE

Assign to Treatment .

Take up Treatment FALSE - TRUE

Figure 4: Case with 0, =0.01
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Obs: 500
Form: linear
sd(d): 0.01

4 1 2 3

Figure 5: Vanilla OLS

= RMSE: 0.12
= Bias: 0.00076

= Coverage: 95%

Obs: 500
Form: linear
sd(d): 0.01

300
200

100

Figure 6: Local Linear Regression

= RMSE: 0.23
= Bias: -0.00266

= Coverage: 94%
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200

Obs: 1000
Form: linear
sd(d): 0.01

1 2 3

Figure 7: Vanilla OLS
RMSE: 0.08
Bias: 0.00034

Coverage: 95%

Obs: 1000
Form: linear

sd(d): 0.01
00

300

200

100

1 2 3 4

Figure 8: Local Linear Regression

RMSE: 0.16
Bias: 0.00203

Coverage: 94%
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Obs: 1000
Form: quadratic
sd(d): 10

150

100

40 0 40

Figure 9: Vanilla OLS

= RMSE: 22.75
= Bias: 22.2743

= Coverage: 32%

Obs: 1000
Form: quadratic
sd(d): 10

4000

3000
2000

1000

-40 [ 40 80

Figure 10: Local Linear Regression

= RMSE: 0.3
= Bias: 0.1664

= Coverage: 90%
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Fuzzy RDD

= Objectives:

= Understanding properties of Parametric and Non-parametric estimators under
different compliers distributions around cutoff.

= Understanding properties of Parametric and Non-parametric estimators under
violation of theoretical assumptions

= Simulations set-up

= X~ N(0,04) running variable, with o, =1

D, — Binomial(1,0.2), if T;<c
e Binomial(1,0.8), if T;=c¢
0 if Ti <0, X;j<-2
D Binomial(1,0.2) if T; <0, -2 < X;<0
= D; =

Binomial(1,0.8) if T;=0, 0<X;<2
1 if T;=20, X;=2

D; = Binomial (1,<IJ(X‘7”X )), treatment take-up, with o4 =10.2,1}

Ta
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QOutcome

Response Variable and Compliance

Running variable

Assign to Treatment .+ FalsE - TRUE

Take up Treatment . FalsE - TRUE

Figure 11: Outcomes in fuzzy Design



1.00

0.751

0.501

0.251

Probability Receiving Treatment

0.001

tess s

2 0 2
Running variable (x)

Figure 12: Case with "Uniform" probability, i.e. 20% before cutoff, 80% after
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Ops: 1000 Obs: 1000 Os: 1000
Form: Inear Form: inear orm: Inear
sdid): uniform sd(d) uniform sd{d): uniform

&0

Figure 13: First-stage (2sls) Figure 14: ITT (2sls) Figure 15: FRD (2sls)

= Bias: -0.0006 = Bias: 0.0003 = Bias: -0.0003

os: 1000 obs: 1000 os: 1000
o intarm S35 intorm <306 unform
)
300 0
=
200 0
100 " 100
. . .
o o8 B " . : : s . 2 s . s
Figure 16: First-stage (LLR) Figure 17: ITT (LLR) Figure 18: FRD (LLR)

= Bias: 0.00047 = Bias: 0.0006 = Bias: 0.0018
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Figure 19: Case with "Jump"
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Ops: 1000 Obs: 1000 Os: 1000

Porm inear Porminesr Porm inear
sd(d): jump. sd(d) jump sdid): jump.
=
0
™
o =
w =
=0
w
. . .
o o 2 s . . : s : B s .
Figure 20: First-stage (2sls) Figure 21: ITT (2sls) Figure 22: FRD (2sls)

= Bias: -0.063 = Bias: -0.1038 = Bias: 0.005

os: 1000 obs: 1000 os: 1000
Porm inear Forminesr Porm ineer
sd(d): jump. sd(g) jump sdid): jump.
20
.
=0
™ @
=
. . .
o o 2 s . k : s : f s .
Figure 23: First-stage Figure 24: ITT (LLR) Figure 25: FRD (LLR)

= Bias: -0.017 = Bias: -0.027 = Bias: 0.00035



Probability Receiving Treatment
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0
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Figure 26: Case with 04 =0.2

&l



Ops: 1000
Form: Inear

Obs: 1000
Form: inear
sdid) 0.2 sd(d) 0.2
1000 =
0
0 o
05 o0 03 10 15 4 0 . 2

Figure 27: First-stage (2sls)

= Bias: -0.186

Figure 28: ITT (2sls)

= Bias: -0.315
oos: 1000 ovs: 1000
s o

15

K

Figure 30: First-stage (LLR)

= Bias: -0.803

o . 2

Figure 31: ITT (LLR)

Bias: -1.292

Ops: 1000
Form: Inear
sdidy 02

1500

Figure 29: FRD (2sls)

= Bias: 0.002

Obs: 1000
Form: Inear
sdid):02

75 0 25 00 25

Figure 32: FRD (LLR)

= Bias: -0.430
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Probability Receiving Treatment
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Figure 33: Case with 04 =1
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Ops: 1000
Form: Inear
sdid) 1

00 05

Figure 34: First-stage

= Bias: -0.363

Ops: 1000
Form: Inear

00 05

Figure 37: First-stage

= Bias: -0.494

0

o

Obs: 1000
Form inear
@

sd(d) 1
o
0
o
' o '

Figure 35: ITT

Bias: -0.616

Obs: 1000
Form inear
sd(d) 1

o '

Figure 38: ITT

Bias: -0.839

Ops: 1000
Form: Inear

200

1000

o w© 0

Figure 36: FRD

= Bias: 0.018

Ops: 1000
Form: Inear

o 0 0

Figure 39: FRD

= Bias: 12.478
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Conclusion




Conclusion

= Sharp RDD
= Vanilla OLS estimator is the best model when functional form assumption is
correct

= Local linear regression is the best model when the functional form is unknown
and the running variable has outliers, i.e., observations far from the cutoff
with great values.

= Fuzzy RDD

= Non-compliance to treatment assignment damage estimators’ properties

= Vanilla OLS estimators work better than the Local linear model when
non-compliance is close to the cutoff

= When the first stage is weak, estimates become unreliable
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